3,853 research outputs found

    Explosive Disintegration of a Massive Young Stellar System in Orion

    Full text link
    Young massive stars in the center of crowded star clusters are expected to undergo close dynamical encounters that could lead to energetic, explosive events. However, there has so far never been clear observational evidence of such a remarkable phenomenon. We here report new interferometric observations made with the Submillimeter Array (SMA) that indicate the well known enigmatic wide-angle outflow located in the Orion BN/KL star-forming region to have been produced by such a violent explosion during the disruption of a massive young stellar system, and that this was caused by a close dynamical interaction about 500 years ago. This outflow thus belongs to a totally different family of molecular flows which is not related to the classical bipolar flows that are generated by stars during their formation process. Our molecular data allow us to create a 3D view of the debris flow and to link this directly to the well known Orion H2_2 "fingers" farther outComment: Accepted by ApJ Letters The 3D movie can be found in: ftp://ftp.mpifr-bonn.mpg.de/outgoing/lzapata/movie.gi

    A ringed pole-on outflow from DO Tauri revealed by ALMA

    Get PDF
    We present new ALMA Band 6 observations including the CO (2-1) line and 1.3 mmcontinuum emission from the surroundings of the young stellar object DO Tauri. TheALMA CO molecular data show three different series of rings at different radial ve-locities. These rings have radii around 220 au and 800 au. We make individual fits tothe rings and note that their centers are aligned with DO Tauri and its optical high-velocity jet. In addition, we notice that the velocity of these structures increases withthe separation from the young star. We discuss the data under the hypothesis that therings represent velocity cuts through three outflowing shells that are possibly drivenby a wide-angle wind, dragging the environment material along a direction close to theline of sight (i= 19◦). We estimate the dynamical ages, the mass, the momentum andthe energy of each individual outflow shell and those of the whole outflow. The resultsare in agreement with those found in outflows from Class II sources. We make a roughestimate for the size of the jet/wind launching region, which needs to be of.15 au.We report the physical characteristics of DO Tauri?s disk continuum emission (almostface-on and with a projected major axis in the north-south direction) and its velocitygradient orientation (north-south), indicative of disk rotation for a 1-2 Mcentral star.Finally we show an HST [SII] image of the optical jet and report a measurement of itsorientation in the plane of the sky.Fil: Fernandez Lopez, Manuel. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Zapata Gonzalez, Luis Alberto. Universidad Nacional Autonoma de Mexico. Instituto de Astronomia; MéxicoFil: Rodríguez, Luis F.. Universidad Nacional Autonoma de Mexico. Instituto de Astronomia; MéxicoFil: Vazzano, María Mercedes. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Guzman, Andrés E.. National Astronomical Observatory Of Japan; JapónFil: López, Rosario. Universidad Autónoma de Barcelona. Facultad de Física. Departamento Astronomía y Meteorología; Españ

    Intercalation and dynamics of hydrated Fe2+ in the vermiculites from Santa Olalla and Ojén

    Get PDF
    Although the intercalation of Fe3+ into layered phyllosicilicates-especially into smectites-attracted much attention in the past two decades, the information about Fe2+ loaded phyllosilicates is sparse. Here we present an investigation of the Fe2+ exchanged vermiculites from Santa Olalla and Ojén (Andalusia, Spain) by means of Mössbauer spectroscopy. The room temperature Mössbauer spectra are very similar to those of the starting compounds (Na forms) except for a decrease of the contribution of structural Fe3+ and a concomitant increase of the contribution of Fe2+ sites, indicating an internal redox process. The extent of this redox reaction is different for the two vermiculites. Thus, the intercalated Fe2+ acts as an electron mediator from the external medium to the structural Fe3+ ions. A new component attributable to intercalated Fe2+ is practically invisible in the room temperature Mössbauer spectra, but increases strongly and continuously during cooling to 4.2 K, where it is the dominant feature of the Mössbauer patterns. At 4.2 K, its quadruple splitting amounts to 3.31 mm/s, which is in excellent agreement with the quadrupole slitting of Fe2+ coordinated to six water molecules in a highly symmetric octahedral arrangement. The strong decrease of the Mössbauer-Lamb factor of this component with increasing temperature indicates a weak bonding of the Fe 2+ in the interlayer space

    VLBA Determination of the Distance to Nearby Star-forming Regions. IV. A Preliminary Distance to the Proto-Herbig AeBe Star EC 95 in the Serpens Core

    Get PDF
    Using the Very Long Base Array, we observed the young stellar object EC 95 in the Serpens cloud core at eight epochs from 2007 December to 2009 December. Two sources are detected in our field and are shown to form a tight binary system. The primary (EC 95a) is a 4-5 M_⊙ proto-Herbig AeBe object (arguably the youngest such object known), whereas the secondary (EC 95b) is most likely a low-mass T Tauri star. Interestingly, both sources are non-thermal emitters. While T Tauri stars are expected to power a corona because they are convective while they go down the Hayashi track, intermediate-mass stars approach the main sequence on radiative tracks. Thus, they are not expected to have strong superficial magnetic fields, and should not be magnetically active. We review several mechanisms that could produce the non-thermal emission of EC 95a and argue that the observed properties of EC 95a might be most readily interpreted if it possessed a corona powered by a rotation-driven convective layer. Using our observations, we show that the trigonometric parallax of EC 95 is π = 2.41 ± 0.02 mas, corresponding to a distance of 414.9^(+4.4)_ (–4.3) pc. We argue that this implies a distance to the Serpens core of 415 ± 5 pc and a mean distance to the Serpens cloud of 415 ± 25 pc. This value is significantly larger than previous estimates (d ~ 260 pc) based on measurements of the extinction suffered by stars in the direction of Serpens. A possible explanation for this discrepancy is that these previous observations picked out foreground dust clouds associated with the Aquila Rift system rather than Serpens itself

    Pre- and Post-burst Radio Observations of the Class 0 Protostar HOPS 383 in Orion

    Get PDF
    There is increasing evidence that episodic accretion is a common phenomenon in Young Stellar Objects (YSOs). Recently, the source HOPS 383 in Orion was reported to have a ×35\times 35 mid-infrared -- and bolometric -- luminosity increase between 2004 and 2008, constituting the first clear example of a class 0 YSO (a protostar) with a large accretion burst. The usual assumption that in YSOs accretion and ejection follow each other in time needs to be tested. Radio jets at centimeter wavelengths are often the only way of tracing the jets from embedded protostars. We searched the Very Large Array archive for the available observations of the radio counterpart of HOPS 383. The data show that the radio flux of HOPS 383 varies only mildly from January 1998 to December 2014, staying at the level of 200\sim 200 to 300 μ\muJy in the X band (9\sim 9 GHz), with a typical uncertainty of 10 to 20 μ\muJy in each measurement. We interpret the absence of a radio burst as suggesting that accretion and ejection enhancements do not follow each other in time, at least not within timescales shorter than a few years. Time monitoring of more objects and specific predictions from simulations are needed to clarify the details of the connection betwen accretion and jets/winds in YSOs.Comment: ApJ Letters, in pres

    Light-harvesting in bacteria exploits a critical interplay between transport and trapping dynamics

    Full text link
    Light-harvesting bacteria Rhodospirillum Photometricum were recently found to adopt strikingly different architectures depending on illumination conditions. We present analytic and numerical calculations which explain this observation by quantifying a dynamical interplay between excitation transfer kinetics and reaction center cycling. High light-intensity membranes (HLIM) exploit dissipation as a photo-protective mechanism, thereby safeguarding a steady supply of chemical energy, while low light-intensity membranes (LLIM) efficiently process unused illumination intensity by channelling it to open reaction centers. More generally, our analysis elucidates and quantifies the trade-offs in natural network design for solar energy conversion.Comment: 4 pages and 4 figures. Accepted for publication in Physical Review Letters

    Searching for compact radio sources associated to UCHII regions

    Full text link
    Ultra-Compact (UC)HII regions represent a very early stage of massive star formation whose structure and evolution are not yet fully understood. Interferometric observations in recent years show that some UCHII regions have associated compact sources of uncertain nature. Based on this, we carried out VLA 1.3 cm observations in the A configuration of selected UCHII regions in order to report additional cases of compact sources embedded in UCHII regions. From the observations, we find 13 compact sources associated to 9 UCHII regions. Although we cannot establish an unambiguous nature for the newly detected sources, we assess some of their observational properties. According to the results, we can distinguish between two types of compact sources. One type corresponds to sources that probably are deeply embedded in the dense ionized gas of the UCHII region. These sources are being photo-evaporated by the exciting star of the region and will last for 104105^4-10^5 yr. They may play a crucial role in the evolution of the UCHII region as the photo-evaporated material could replenish the expanding plasma and might provide a solution to the so-called lifetime problem for these regions. The second type of compact sources is not associated with the densest ionized gas of the region. A few of these sources appear resolved and may be photo-evaporating objects such as those of the first type but with significantly lower mass depletion rates. The rest of sources of this second type appear unresolved and their properties are varied. We speculate on the similarity between the sources of the second type and those of the Orion population of radio sources.Comment: 33 pages, 6 figures, 4 tables. Accepted for publication in Ap
    corecore